On the Norm of the Metric Projections

Fernando Mazzone*
Departamento de Matemática, Facultad de Cs. Exactas Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, 5800 Rio Cuarto, Argentina
E-mail: fmazzone@exa.unrc.edu.ar
Communicated by Frank Deutsch

Received August 20, 1996; accepted in revised form April 30, 1998

Let X be a Banach space. Given M a subspace of X we denote with P_{M} the metric projection onto M. We define $\pi(X):=\sup \left\{\left\|P_{M}\right\|: M\right.$ a proximinal subspace of $X\}$. In this paper we give a bound for $\pi(X)$. In particular, when $X=L_{p}$, we obtain the inequality $\left\|P_{M}\right\| \leqslant 2^{|2 / p-1|}$, for every subspace M of L_{p}. We also show that $\pi(X)=\pi\left(X^{*}\right)$. © 1999 Academic Press

1. INTRODUCTION AND NOTATIONS

Let X be a Banach space and M a subspace of X. We define

$$
P_{M}(x):=\{y \in M:\|x-y\|=d(x, M)\}
$$

The set-valued mapping $P_{M}: X \rightarrow 2^{M}$ thus defined is called the metric projection onto M. If $P_{M}(x) \neq \varnothing$ for every $x \in X$, we shall say that M is a proximinal subspace of X. We define the norm of P_{M} by

$$
\left\|P_{M}\right\|:=\sup \left\{\|y\|: y \in P_{M}(x) \text { and }\|x\| \leqslant 1\right\}
$$

and the metric constant $\pi(X)$ by

$$
\pi(X):=\sup \left\{\left\|P_{M}\right\|: M \text { a proximinal subspace of } X\right\} .
$$

We trivially have $1 \leqslant \pi(X) \leqslant 2$. It is well known that if $\operatorname{dim} X \geqslant 3$ then X is a Hilbert space iff $\pi(X)=1$, see [3, Theorem 5.1].

A uniformly non-square space is a Banach space X such that there exists a constant $\alpha, 0<\alpha<1$, satisfying $\|x-y\| \leqslant 2 \alpha$ or $\|x+y\| \leqslant 2 \alpha$ for every

[^0]$x, y \in B_{X}$, where B_{X} is the unit ball. In [2, Theorem 1.1] Cuenya and Mazzone proved that X is an uniformly non-square space iff $\pi(X)<2$. So, we observe that the metric constant $\pi(X)$ is close to the geometry of the Banach space X.

The term operator means a bounded linear operator. Two Banach spaces X and Y are called isomorphic if there exists an invertible operator from X onto Y. The Banach-Mazur distance $d(X, Y)$ is defined by inf $\|T\|\left\|T^{-1}\right\|$, the infimum being taken over all invertible operators from X onto Y (if X is not isomorphic to Y we put $d(X, Y)=\infty)$.

As is usual, for $1 \leqslant p \leqslant \infty$ and $n \in \mathbb{N}$, we let l_{p}^{n} denote the linear space \mathbb{R}^{n} with the l_{p}-norm. We have the following theorems.

Theorem 1.1. (a) Let X be an n-dimensional subspace of $L_{p}(\mu)$, $1 \leqslant p \leqslant \infty$. Then $d\left(X, l_{2}^{n}\right) \leqslant n^{|1 / 2-1 / p|}$.
(b) For any n-dimensional space $X, d\left(X, l_{2}^{n}\right) \leqslant \sqrt{n}$.

Proof. See [4, Corollary III.B.9].
We define the constant $\mu(X)$ by

$$
\mu(X)=\sup \left\{d\left(E, l_{2}^{2}\right): E \subset X \text { and } \operatorname{dim} E=2\right\} .
$$

We mention now the two main points of this article. In Section 2 of this paper we prove with Theorem 2.2 that $\pi(X) \leqslant(\mu(X))^{2}$. In Section 3 we show the relation $\pi(X)=\pi\left(X^{*}\right)$.

2. A BOUND FOR $\pi(X)$

We need to prove the following lemma.

Lemma 2.1. Let \mathscr{H} be a Hilbert space and M a proximinal subspace of \mathscr{H}. Let $x \in \mathscr{H}$ and $1 \leqslant k<\infty$. We suppose that $y \in M$ satisfies

$$
\|x-y\| \leqslant k d(x, M) .
$$

Then

$$
\|y\| \leqslant k\|x\| .
$$

Proof. We can assume that $x \neq 0$. Let $z=P_{M}(x)$. We put $d:=d(x, M)$ $=\|x-z\|$. As $x-z \perp y$ we obtain

$$
\begin{align*}
\|y\| & \leqslant\|z\|+\|y-z\|=\sqrt{\|x\|^{2}-d^{2}}+\sqrt{\|y-x\|^{2}-d^{2}} \\
& \leqslant \sqrt{\|x\|^{2}-d^{2}}+\sqrt{k^{2} d^{2}-d^{2}} \\
& =\|x\|\left(\sqrt{1-\left(\frac{d}{\|x\|}\right)^{2}}+\frac{d}{\|x\|} \sqrt{k^{2}-1}\right) . \tag{1}
\end{align*}
$$

It is easy to prove that the function $f(\xi):=\sqrt{1-\xi^{2}}+\xi \sqrt{k^{2}-1}$ for $\xi \in[0,1]$ has a maximum at $\xi_{0}=\sqrt{1-\left(1 / k^{2}\right)}$ and $f\left(\xi_{0}\right)=k$. By (1), this implies the desired result.

Theorem 2.2. For every Banach space X,

$$
\begin{equation*}
\pi(X) \leqslant(\mu(X))^{2} \tag{2}
\end{equation*}
$$

Proof. Let M be a proximinal subspace of $X, x \in X \backslash M$, and $y \in P_{M}(x)$. Let E be the subspace spanned by x and y and $T: E \rightarrow l_{2}^{2}$ be an invertible operator. For all $\alpha \in \mathbb{R}$, we have $\|x-y\| \leqslant\|x-\alpha y\|$. As

$$
\begin{equation*}
\frac{1}{\left\|T^{-1}\right\|}\|z\| \leqslant\|T(z)\| \leqslant\|T\|\|z\| \quad \text { for all } \quad z \in E \tag{3}
\end{equation*}
$$

We get, for all $\alpha \in \mathbb{R}$,

$$
\|T(x)-T(y)\| \leqslant\|T\|\|x-y\| \leqslant\|T\|\|x-\alpha y\| \leqslant\|T\|\left\|T^{-1}\right\|\|T(x)-\alpha T(y)\| .
$$

Using Lemma 2.1, for $\mathscr{H}=l_{2}^{2}$ and M the subspace generated by $T(y)$, we infer that

$$
\|T(y)\| \leqslant\|T\|\left\|T^{-1}\right\|\|T(x)\| .
$$

By (3) we get

$$
\|y\| \leqslant\left(\|T\|\left\|T^{-1}\right\|\right)^{2}\|x\| .
$$

Taking the infimum over all T we obtain

$$
\|y\| \leqslant\left(d\left(E, l_{2}^{2}\right)\right)^{2}\|x\|
$$

This proves the theorem.
The next result follows immediately from Theorems 1.1 and 2.2.
Corollary 2.3. $\pi\left(L_{p}\right) \leqslant 2^{|2 / p-1|}$.

We trivially have $\pi\left(L_{p}\right)=2^{|2 / p-1|}$ for $p=1,2, \infty$. We will show that $\pi\left(l_{p}^{2}\right)<2^{|2 / p-1|}$ for others values of p. Let $1<p<\infty, p \neq 2$, and $q=$ $p /(p-1)$. By Theorem 3.4 below we can suppose $p<2<q$. Let H be the hyperplane in \mathbb{R}^{2} given by $\{(x, y): \alpha x+\beta y=0\}$, where $\|(\alpha, \beta)\|_{q}=1$. If $\alpha=0$ or $\beta=0$ then $\left\|P_{H}\right\|=1$. We suppose $\alpha, \beta \neq 0$. From [2, Lemma 2.1] we have

$$
\left\|P_{H}\right\|=\left(|\alpha|^{(q-1) q}+|\beta|^{(q-1) q}\right)^{1 / q}\|(\alpha, \beta)\|_{p}<\|(\alpha, \beta)\|_{p} \leqslant 2^{|2 / p-1|} .
$$

Therefore

$$
\pi\left(l_{p}^{2}\right)=\max \left\{\left\|P_{H}\right\|: H \text { hyperplane of } \mathbb{R}^{2}\right\}<2^{|2 / p-1|} .
$$

$$
\text { 3. } \pi(X)=\pi\left(X^{*}\right)
$$

Let X and Y two Banach spaces. We say that the set-valued mapping $P: X \rightarrow 2^{Y}$ admits a linear selection if there exists a linear mapping $T: X \rightarrow Y$ such that $T(x) \in P(x)$, for every $x \in X$. We observe that, if the metric projection $P_{M}: X \rightarrow M$ admits a linear selection T, then T is a bounded operator. In fact, $\|T\| \leqslant \pi(X)$. As is usual, by T^{*} we denote the adjoint operator of T. We recall that if M is a subspace of X, we denote by M^{\perp} the subspace of X^{*} defined by $M^{\perp}:=\left\{x^{*} \in X^{*}: x^{*}(x)=0\right.$ for all $\left.x \in M\right\}$.

Lemma 3.1. Let M be a subspace of a Banach space X. We suppose that the metric projection P_{M} admits a linear selection T. Then T^{*} is a linear selection of $P_{N^{\perp}}$, where $N:=\operatorname{ker} T$.

Proof. As T is an operator with $T^{2}=T$ (i.e., is a projection) we have $X=M \oplus N$ and N is a closed subspace of X. Moreover, it is easy to see that $T^{*}\left(X^{*}\right)=N^{\perp}$. Now we will show that, for any $x^{*} \in X^{*}, T^{*}\left(x^{*}\right) \in P_{N^{\perp}}\left(x^{*}\right)$. For every $x^{*} \in X^{*}$ we have

$$
\begin{align*}
\left\|x^{*}-T^{*}\left(x^{*}\right)\right\| & =\sup \left\{\left|\left(x^{*}-T^{*}\left(x^{*}\right)\right)(x+y)\right|:\|x+y\| \leqslant 1, x \in M \text { and } y \in N\right\} \\
& =\sup \left\{\left|x^{*}(y)\right|:\|x+y\| \leqslant 1, x \in M \text { and } y \in N\right\} . \tag{4}
\end{align*}
$$

If $y \in N$ then $0=T(y) \in P_{M}(y)$. Hence $\|y\| \leqslant\|x+y\|$, for all $x \in M$. Then

$$
\begin{gather*}
\sup \left\{\left|x^{*}(y)\right|:\|x+y\| \leqslant 1, x \in M \text { and } y \in N\right\} \\
=\sup \left\{\left|x^{*}(y)\right|:\|y\| \leqslant 1 \text { and } y \in N\right\} . \tag{5}
\end{gather*}
$$

Let $z^{*} \in N^{\perp}$. Using (4) and (5) we obtain

$$
\begin{aligned}
\left\|x^{*}-z^{*}\right\| & \geqslant \sup \left\{\left|\left(x^{*}-z^{*}\right)(y)\right|:\|y\| \leqslant 1 \text { and } y \in N\right\} \\
& =\sup \left\{\left|x^{*}(y)\right|:\|y\| \leqslant 1 \text { and } y \in N\right\} \\
& =\left\|x^{*}-T^{*}\left(x^{*}\right)\right\| .
\end{aligned}
$$

Consequently $T^{*}\left(x^{*}\right) \in P_{N^{\perp}}\left(x^{*}\right)$.
In [3, p. 142] we see, implicitly, the following lemma.

Lemma 3.2. Let M be a proximinal hyperplane of the Banach space $X, x \in X$, and $y \in P_{M}(x)$. Then P_{M} admits a linear selection T with $T(x)=y$.

Now we will present the main result of this section.

Theorem 3.3. For every Banach space X we have that $\pi(X)=\pi\left(X^{*}\right)$.
Proof. We can suppose that X is a reflexive Banach space. For if X is non-reflexive then X is not a uniformly non-square Banach space, [1, p. 256]. Therefore $\pi(X)=2$. We observe that X^{*} is a non-reflexive space. Then, in similar way, $\pi\left(X^{*}\right)=2$. Thus $\pi(X)=\pi\left(X^{*}\right)$. We recall that if X is reflexive then every closed subspace of X is proximinal, see [3, p. 99].

For every $\varepsilon>0$ we can find a subspace M of $X, x \in B_{X}$, and $y \in P_{M}(x)$ such that $\pi(X)-\varepsilon<\|y\|$. From the characterization theorem of elements of best approximation, [3, p. 18], we get $x^{*} \in M^{\perp}$ with $\left\|x^{*}\right\|=1$ and $x^{*}(x-y)=\|x-y\|$. We put $H=\operatorname{Ker} x^{*}$. Then $y \in P_{H}(x)$. As H is a proximinal subspace of X, as a consequence of Lemma 3.2 we get a linear selection T of P_{H} such that $T(x)=y$. From Lemma 3.1 we obtain

$$
\pi(X)-\varepsilon \leqslant\|y\|=\|T(x)\| \leqslant\|T\|=\left\|T^{*}\right\| \leqslant\left\|P_{N^{\perp}}\right\| \leqslant \pi\left(X^{*}\right)
$$

where $N:=\operatorname{Ker} T$. Since ε is arbitrary we have

$$
\begin{equation*}
\pi(X) \leqslant \pi\left(X^{*}\right) . \tag{6}
\end{equation*}
$$

From inequality (6) we infer that $\pi\left(X^{*}\right) \leqslant \pi\left(X^{* *}\right)$. Moreover, as X is a reflexive Banach space, we have that $\pi\left(X^{* *}\right)=\pi(X)$. Consequently $\pi(X)$ $=\pi\left(X^{*}\right)$.

REFERENCES

1. B. Beauzamy, "Introduction to Banach Spaces and Their Geometry," North Holland, Amsterdam, 1985.
2. F. Mazzone and H. Cuenya, A note on metric projection, J. Approx. Theory 81 (1995), 425-428.
3. I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, New York, 1970.
4. P. Wojtasczyk, "Banach Spaces for Analysis," Cambridge Univ. Press, Cambridge, UK, 1991.

[^0]: * The author is supported by CONICOR, CONICET, and Universidad Nacional de Río Cuarto.

