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Let X be a Banach space. Given M a subspace of X we denote with P,, the
metric projection onto M. We define 7(X) :=sup { || P, |: M a proximinal subspace
of X}. In this paper we give a bound for n(X). In particular, when X=L,, we
obtain the inequality || P, || <2'%7~1, for every subspace M of L,. We also show
that 7n(X)=n(X*). © 1999 Academic Press

1. INTRODUCTION AND NOTATIONS

Let X be a Banach space and M a subspace of X. We define
Pyp(x):={ye M: |x— yl| =d(x, M)}.

The set-valued mapping P,,: X — 2™ thus defined is called the metric
projection onto M. If P,/(x) # ¢ for every x € X, we shall say that M is a
proximinal subspace of X. We define the norm of P,, by

IPar]l :=sup{[ly]: y € Ppdx)and ||x| <1}
and the metric constant n(X) by
n(X) :=sup{||Py|I: M a proximinal subspace of X}.

We trivially have 1 <#z(X) <2. It is well known that if dimX >3 then X
is a Hilbert space iff z(X) =1, see [3, Theorem 5.1].

A uniformly non-square space is a Banach space X such that there exists
a constant a, 0 <a <1, satisfying ||x — y|| <2a or |x+ y|| <2a for every

* The author is supported by CONICOR, CONICET, and Universidad Nacional de Rio
Cuarto.

214

0021-9045/99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.



ON THE NORM OF METRIC PROJECTIONS 215

X, y€ By, where By is the unit ball. In [2, Theorem 1.1] Cuenya and
Mazzone proved that X is an uniformly non-square space iff 7n(X) < 2. So,
we observe that the metric constant n(X) is close to the geometry of the
Banach space X.

The term operator means a bounded linear operator. Two Banach spaces
X and Y are called isomorphic if there exists an invertible operator from X
onto Y. The Banach—-Mazur distance d(X, Y) is defined by inf || T| | T,
the infimum being taken over all invertible operators from X onto Y (if X
is not isomorphic to Y we put d(X, Y)= o0).

As is usual, for 1 <p<co and ne N, we let /] denote the linear space R”
with the /,-norm. We have the following theorems.

THEOREM 1.1. (a) Let X be an n-dimensional subspace of L,(u),
1<p< 0. Then d(X, I%) <n"2=1r,

(b) For any n-dimensional space X, d(X, I5) < ﬁ
Proof. See [4, Corollary II1.B.9].
We define the constant u(X) by
w(X)=sup{d(E, I5): Ec X and dim E=2}.
We mention now the two main points of this article. In Section 2 of this

paper we prove with Theorem 2.2 that n(X)<(u(X))% In Section 3 we
show the relation 7(X) =n(X*).

2. A BOUND FOR z(X)
We need to prove the following lemma.

Lemma 2.1. Let # be a Hilbert space and M a proximinal subspace
of H. Let xe H and 1 <k < oo. We suppose that y € M satisfies

[x— y|| <kd(x, M).
Then
Iyl <k |x].

Proof. We can assume that x #0. Let z=P,,(x). We put d:=d(x, M)
=|x—z|. As x—z L y we obtain
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Iyl <zl +ly—zl =/Ix1?—d>+ /|y — x|>—d?
<\/\|x|\2—d2+\/k2d2—d2

=wl (J1=( g )+ vFT) "

It is easy to prove that the function f(&):=./1—E&2+¢& for
£e[0,1] has a maximum at &,=./1—(1/k?) and f(&,) =k. By (1), this

implies the desired result. |I

THEOREM 2.2. For every Banach space X,
(X) < (u(X))> (2)
Proof. Let M be a proximinal subspace of X, xe X\ M, and y € P,,(x).

Let E be the subspace spanned by x and y and T: E— 3 be an invertible
operator. For all e R, we have ||x — y|| <[ x—oap|. As

1
sl Izl <ITEI<ITIHz]  forall zek. (3)

We get, for all a e R,
1T(x) =TI <ITI % = I < 1T x = o | S ITUNTH I T(x) =2 T(p)]-

Using Lemma 2.1, for # =/% and M the subspace generated by T(y), we
infer that

1T < I TIITHIT ()]
By (3) we get
IyI<UTIIT=HD? 1x].
Taking the infimum over all 7 we obtain
Iyl < (d(E, 5))* || x].
This proves the theorem. |

The next result follows immediately from Theorems 1.1 and 2.2.

COROLLARY 2.3. 7(L,) < 212/p =11,
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We trivially have n(L,)=2"%7"1 for p=1,2, oo. We will show that
n(I2) <27~ for others values of p. Let 1<p<oo,p#2, and ¢=
p/(p—1). By Theorem 3.4 below we can suppose p <2 <gq. Let H be the
hyperplane in R* given by {(x, y):ax+ gy =0}, where |[|(a, f)l|,=1. If
a=0 or =0 then |Pg| =1. We suppose a, f#0. From [2, Lemma 2.1]
we have

I1Ppll = (laf =D+ | B9~ DD (a, B, < (o, B, <222,

Therefore

n(l5) =max{ | Py|: H hyperplane of R*} <271,

3. (X)) =n(X*)

Let X and Y two Banach spaces. We say that the set-valued mapping
P: X - 2Y admits a linear selection if there exists a linear mapping 7: X - Y
such that 7(x) € P(x), for every x € X. We observe that, if the metric projection
P,,;: X—> M admits a linear selection 7, then T is a bounded operator. In
fact, |7 <=(X). As is usual, by T* we denote the adjoint operator of 7.
We recall that if M is a subspace of X, we denote by M+ the subspace of
X* defined by M+ :={x*e X*: x*(x)=0 for all xe M}.

Lemma 3.1. Let M be a subspace of a Banach space X. We suppose that
the metric projection P,, admits a linear selection T. Then T* is a linear
selection of Py1, where N :=ker T.

Proof. As T is an operator with T>=T (i.e. is a projection) we have
X=M® N and N is a closed subspace of X. Moreover, it is easy to see that
T*(X*)=N=*. Now we will show that, for any x* e X*, T*(x*)e Py(x*).
For every x* e X* we have

[x* — T*(x*)|| =sup{|(x* — T*(x*))(x+ y)|: |x+ | <1,xe M and y e N}
=sup{[x*(y)l: |x+ y| <1,xeMand ye N}. (4)

If ye N then 0=T(y)e P,,(y). Hence ||y| < ||x+ y|, for all xe M. Then

sup{ [x*(»)|: |x + y| <1,xe Mand y e N}
=sup{|x*(»)|: |y| <1 and ye N}. (5)
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Let z*e Nt. Using (4) and (5) we obtain

Ix* —z*[| =sup{|[(x* —z*)(»)|: [y < 1 and y € N}
=sup{|x*(»)|: Iyl <1and ye N}

= [x* = T*(x*)].

Consequently 7*(x*)e Pyi(x*). |

In [3, p. 142] we see, implicitly, the following lemma.

Lemma 3.2. Let M be a proximinal hyperplane of the Banach space
X,xeX, and y € P,,(x). Then P,, admits a linear selection T with T(x)= y.

Now we will present the main result of this section.

THEOREM 3.3. For every Banach space X we have that n(X)=n(X*).

Proof. We can suppose that X is a reflexive Banach space. For if X
is non-reflexive then X is not a uniformly non-square Banach space,
[1, p.256]. Therefore n(X)=2. We observe that X* is a non-reflexive
space. Then, in similar way, n(X*)=2. Thus 7n(X)=n(X*). We recall
that if X is reflexive then every closed subspace of X is proximinal, see
[3, p.99].

For every ¢ >0 we can find a subspace M of X, xe By, and ye P,(x)
such that n(X)—e&<|y|. From the characterization theorem of elements
of best approximation, [3, p.18], we get x*e M+ with |x*|=1 and
x*(x—y)=|x—y|. We put H=Kerx*. Then yePy(x). As H is a
proximinal subspace of X, as a consequence of Lemma 3.2 we get a linear
selection T of Py such that T(x)=y. From Lemma 3.1 we obtain

(X)) —e< |yl =T <IT| = T*| < [Pyl <7(X*)
where N :=Ker 7. Since ¢ is arbitrary we have
n(X) <m(X*). (6)

From inequality (6) we infer that n(X*)<n(X**). Moreover, as X is a
reflexive Banach space, we have that n(X**)=nzn(X). Consequently 7(X)
=n(X*). |
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