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Let X be a Banach space. Given M a subspace of X we denote with PM the
metric projection onto M. We define ?(X ) :=sup [&PM &: M a proximinal subspace
of X]. In this paper we give a bound for ?(X ). In particular, when X=Lp , we
obtain the inequality &PM &�2 |2�p&1|, for every subspace M of Lp . We also show
that ?(X )=?(X*). � 1999 Academic Press

1. INTRODUCTION AND NOTATIONS

Let X be a Banach space and M a subspace of X. We define

PM(x) :=[ y # M: &x& y&=d(x, M)].

The set-valued mapping PM : X � 2M thus defined is called the metric
projection onto M. If PM(x){< for every x # X, we shall say that M is a
proximinal subspace of X. We define the norm of PM by

&PM & :=sup[&y&: y # PM(x) and &x&�1]

and the metric constant ?(X ) by

?(X ) :=sup[&PM &: M a proximinal subspace of X].

We trivially have 1�?(X )�2. It is well known that if dimX�3 then X
is a Hilbert space iff ?(X )=1, see [3, Theorem 5.1].

A uniformly non-square space is a Banach space X such that there exists
a constant :, 0<:<1, satisfying &x& y&�2: or &x+ y&�2: for every
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x, y # BX , where BX is the unit ball. In [2, Theorem 1.1] Cuenya and
Mazzone proved that X is an uniformly non-square space iff ?(X )<2. So,
we observe that the metric constant ?(X) is close to the geometry of the
Banach space X.

The term operator means a bounded linear operator. Two Banach spaces
X and Y are called isomorphic if there exists an invertible operator from X
onto Y. The Banach�Mazur distance d(X, Y ) is defined by inf &T& &T&1&,
the infimum being taken over all invertible operators from X onto Y (if X
is not isomorphic to Y we put d(X, Y )=�).

As is usual, for 1�p�� and n # N, we let ln
p denote the linear space Rn

with the lp -norm. We have the following theorems.

Theorem 1.1. (a) Let X be an n-dimensional subspace of Lp(+),
1�p��. Then d(X, ln

2)�n |1�2&1�p|.

(b) For any n-dimensional space X, d(X, ln
2)�- n.

Proof. See [4, Corollary III.B.9].

We define the constant +(X) by

+(X )=sup[d(E, l2
2): E/X and dim E=2].

We mention now the two main points of this article. In Section 2 of this
paper we prove with Theorem 2.2 that ?(X )�(+(X ))2. In Section 3 we
show the relation ?(X )=?(X*).

2. A BOUND FOR ?(X )

We need to prove the following lemma.

Lemma 2.1. Let H be a Hilbert space and M a proximinal subspace
of H. Let x # H and 1�k<�. We suppose that y # M satisfies

&x& y&�kd(x, M).

Then

&y&�k &x&.

Proof. We can assume that x{0. Let z=PM(x). We put d :=d(x, M)
=&x&z&. As x&z = y we obtain
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&y&�&z&+&y&z&=- &x&2&d 2+- &y&x&2&d 2

�- &x&2&d 2+- k2d 2&d 2

=&x& \�1&\ d
&x& +

2

+
d

&x&
- k2&1 + . (1)

It is easy to prove that the function f (!) :=- 1&!2+! - k2&1 for
! # [0, 1] has a maximum at !0=- 1&(1�k2) and f (!0)=k. By (1), this
implies the desired result. K

Theorem 2.2. For every Banach space X,

?(X )�(+(X))2. (2)

Proof. Let M be a proximinal subspace of X, x # X"M, and y # PM(x).
Let E be the subspace spanned by x and y and T: E � l2

2 be an invertible
operator. For all : # R, we have &x& y&�&x&:y&. As

1
&T&1&

&z&�&T(z)&�&T&&z& for all z # E. (3)

We get, for all : # R,

&T(x)&T( y)&�&T&&x& y&�&T&&x&:y&�&T&&T&1&&T(x)&:T( y)&.

Using Lemma 2.1, for H=l2
2 and M the subspace generated by T( y), we

infer that

&T( y)&�&T&&T&1&&T(x)&.

By (3) we get

&y&�(&T&&T&1&)2 &x&.

Taking the infimum over all T we obtain

&y&�(d(E, l2
2))2 &x&.

This proves the theorem. K

The next result follows immediately from Theorems 1.1 and 2.2.

Corollary 2.3. ?(Lp)�2 |2�p&1|.
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We trivially have ?(Lp)=2 |2�p&1| for p=1, 2, �. We will show that
?(l2

p)<2 |2�p&1| for others values of p. Let 1<p<�, p{2, and q=
p�( p&1). By Theorem 3.4 below we can suppose p<2<q. Let H be the
hyperplane in R2 given by [(x, y): :x+;y=0], where &(:, ;)&q=1. If
:=0 or ;=0 then &PH&=1. We suppose :, ;{0. From [2, Lemma 2.1]
we have

&PH &=(|:| (q&1) q+|;| (q&1) q)1�q &(:, ;)&p<&(:, ;)&p�2 |2�p&1|.

Therefore

?(l2
p)=max[&PH&: H hyperplane of R2]<2 |2�p&1|.

3. ?(X)=?(X*)

Let X and Y two Banach spaces. We say that the set-valued mapping
P: X � 2Y admits a linear selection if there exists a linear mapping T: X � Y
such that T(x) # P(x), for every x # X. We observe that, if the metric projection
PM : X � M admits a linear selection T, then T is a bounded operator. In
fact, &T&�?(X ). As is usual, by T* we denote the adjoint operator of T.
We recall that if M is a subspace of X, we denote by M= the subspace of
X* defined by M= :=[x* # X*: x*(x)=0 for all x # M].

Lemma 3.1. Let M be a subspace of a Banach space X. We suppose that
the metric projection PM admits a linear selection T. Then T* is a linear
selection of PN = , where N :=ker T.

Proof. As T is an operator with T 2=T (i.e., is a projection) we have
X=M�N and N is a closed subspace of X. Moreover, it is easy to see that
T*(X*)=N=. Now we will show that, for any x* # X*, T*(x*) # PN =(x*).
For every x* # X* we have

&x*&T*(x*)&=sup[ |(x*&T*(x*))(x+ y)|: &x+ y&�1, x # M and y # N]

=sup[ |x*( y)|: &x+ y&�1, x # M and y # N]. (4)

If y # N then 0=T( y) # PM( y). Hence &y&�&x+ y&, for all x # M. Then

sup[ |x*( y)|: &x+ y&�1, x # M and y # N]

=sup[ |x*( y)|: &y&�1 and y # N]. (5)
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Let z* # N=. Using (4) and (5) we obtain

&x*&z*&�sup[ |(x*&z*)( y)|: &y&�1 and y # N]

=sup[ |x*( y)|: &y&�1 and y # N]

=&x*&T*(x*)&.

Consequently T*(x*) # PN =(x*). K

In [3, p. 142] we see, implicitly, the following lemma.

Lemma 3.2. Let M be a proximinal hyperplane of the Banach space
X, x # X, and y # PM(x). Then PM admits a linear selection T with T(x)= y.

Now we will present the main result of this section.

Theorem 3.3. For every Banach space X we have that ?(X )=?(X*).

Proof. We can suppose that X is a reflexive Banach space. For if X
is non-reflexive then X is not a uniformly non-square Banach space,
[1, p. 256]. Therefore ?(X )=2. We observe that X* is a non-reflexive
space. Then, in similar way, ?(X*)=2. Thus ?(X)=?(X*). We recall
that if X is reflexive then every closed subspace of X is proximinal, see
[3, p. 99].

For every =>0 we can find a subspace M of X, x # BX , and y # PM(x)
such that ?(X )&=<&y&. From the characterization theorem of elements
of best approximation, [3, p. 18], we get x* # M= with &x*&=1 and
x*(x& y)=&x& y&. We put H=Ker x*. Then y # PH(x). As H is a
proximinal subspace of X, as a consequence of Lemma 3.2 we get a linear
selection T of PH such that T(x)= y. From Lemma 3.1 we obtain

?(X )&=�&y&=&T(x)&�&T&=&T*&�&PN= &�?(X*)

where N :=Ker T. Since = is arbitrary we have

?(X )�?(X*). (6)

From inequality (6) we infer that ?(X*)�?(X**). Moreover, as X is a
reflexive Banach space, we have that ?(X**)=?(X). Consequently ?(X )
=?(X*). K
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