On the Norm of the Metric Projections

Fernando Mazzone*

Departamento de Matemática, Facultad de Cs. Exactas Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina E-mail: fmazzone@exa.unrc.edu.ar

Communicated by Frank Deutsch

Received August 20, 1996; accepted in revised form April 30, 1998

Let X be a Banach space. Given M a subspace of X we denote with P_M the metric projection onto M. We define $\pi(X) := \sup \{ \|P_M\| : M \text{ a proximinal subspace} \text{ of } X \}$. In this paper we give a bound for $\pi(X)$. In particular, when $X = L_p$, we obtain the inequality $\|P_M\| \leq 2^{|2/p-1|}$, for every subspace M of L_p . We also show that $\pi(X) = \pi(X^*)$. © 1999 Academic Press

1. INTRODUCTION AND NOTATIONS

Let X be a Banach space and M a subspace of X. We define

$$P_{M}(x) := \{ y \in M : ||x - y|| = d(x, M) \}.$$

The set-valued mapping $P_M: X \to 2^M$ thus defined is called the *metric* projection onto M. If $P_M(x) \neq \emptyset$ for every $x \in X$, we shall say that M is a proximinal subspace of X. We define the norm of P_M by

$$||P_M|| := \sup\{||y||: y \in P_M(x) \text{ and } ||x|| \le 1\}$$

and the *metric constant* $\pi(X)$ by

 $\pi(X) := \sup\{ \|P_M\| : M \text{ a proximinal subspace of } X \}.$

We trivially have $1 \le \pi(X) \le 2$. It is well known that if dim $X \ge 3$ then X is a Hilbert space iff $\pi(X) = 1$, see [3, Theorem 5.1].

A uniformly non-square space is a Banach space X such that there exists a constant α , $0 < \alpha < 1$, satisfying $||x - y|| \le 2\alpha$ or $||x + y|| \le 2\alpha$ for every

* The author is supported by CONICOR, CONICET, and Universidad Nacional de Río Cuarto.

 $x, y \in B_X$, where B_X is the unit ball. In [2, Theorem 1.1] Cuenya and Mazzone proved that X is an uniformly non-square space iff $\pi(X) < 2$. So, we observe that the metric constant $\pi(X)$ is close to the geometry of the Banach space X.

The term *operator* means a bounded linear operator. Two Banach spaces X and Y are called *isomorphic* if there exists an invertible operator from X onto Y. The *Banach–Mazur distance* d(X, Y) is defined by $\inf ||T|| ||T^{-1}||$, the infimum being taken over all invertible operators from X onto Y (if X is not isomorphic to Y we put $d(X, Y) = \infty$).

As is usual, for $1 \le p \le \infty$ and $n \in \mathbb{N}$, we let l_p^n denote the linear space \mathbb{R}^n with the l_p -norm. We have the following theorems.

THEOREM 1.1. (a) Let X be an n-dimensional subspace of $L_p(\mu)$, $1 \leq p \leq \infty$. Then $d(X, l_2^n) \leq n^{|1/2 - 1/p|}$.

(b) For any n-dimensional space X, $d(X, l_2^n) \leq \sqrt{n}$.

Proof. See [4, Corollary III.B.9].

We define the constant $\mu(X)$ by

$$\mu(X) = \sup \{ d(E, l_2^2) : E \subset X \text{ and } \dim E = 2 \}.$$

We mention now the two main points of this article. In Section 2 of this paper we prove with Theorem 2.2 that $\pi(X) \leq (\mu(X))^2$. In Section 3 we show the relation $\pi(X) = \pi(X^*)$.

2. A BOUND FOR $\pi(X)$

We need to prove the following lemma.

LEMMA 2.1. Let \mathscr{H} be a Hilbert space and M a proximinal subspace of \mathscr{H} . Let $x \in \mathscr{H}$ and $1 \leq k < \infty$. We suppose that $y \in M$ satisfies

$$\|x - y\| \leq kd(x, M).$$

Then

$$\|y\| \leqslant k \|x\|.$$

Proof. We can assume that $x \neq 0$. Let $z = P_M(x)$. We put d := d(x, M) = ||x - z||. As $x - z \perp y$ we obtain

$$\begin{aligned} \|y\| &\leq \|z\| + \|y - z\| = \sqrt{\|x\|^2 - d^2} + \sqrt{\|y - x\|^2 - d^2} \\ &\leq \sqrt{\|x\|^2 - d^2} + \sqrt{k^2 d^2 - d^2} \\ &= \|x\| \left(\sqrt{1 - \left(\frac{d}{\|x\|}\right)^2} + \frac{d}{\|x\|} \sqrt{k^2 - 1} \right). \end{aligned}$$
(1)

It is easy to prove that the function $f(\xi) := \sqrt{1-\xi^2} + \xi \sqrt{k^2-1}$ for $\xi \in [0, 1]$ has a maximum at $\xi_0 = \sqrt{1-(1/k^2)}$ and $f(\xi_0) = k$. By (1), this implies the desired result.

THEOREM 2.2. For every Banach space X,

$$\pi(X) \leqslant (\mu(X))^2. \tag{2}$$

Proof. Let *M* be a proximinal subspace of $X, x \in X \setminus M$, and $y \in P_M(x)$. Let *E* be the subspace spanned by *x* and *y* and *T*: $E \to l_2^2$ be an invertible operator. For all $\alpha \in \mathbb{R}$, we have $||x - y|| \leq ||x - \alpha y||$. As

$$\frac{1}{\|T^{-1}\|} \|z\| \le \|T(z)\| \le \|T\| \|z\| \quad \text{for all} \quad z \in E.$$
(3)

We get, for all $\alpha \in \mathbb{R}$,

$$||T(x) - T(y)|| \le ||T|| ||x - y|| \le ||T|| ||x - \alpha y|| \le ||T|| ||T^{-1}|| ||T(x) - \alpha T(y)||.$$

Using Lemma 2.1, for $\mathcal{H} = l_2^2$ and M the subspace generated by T(y), we infer that

$$||T(y)|| \le ||T|| ||T^{-1}|| ||T(x)||.$$

By (3) we get

$$||y|| \leq (||T|| ||T^{-1}||)^2 ||x||.$$

Taking the infimum over all T we obtain

$$||y|| \leq (d(E, l_2^2))^2 ||x||.$$

This proves the theorem.

The next result follows immediately from Theorems 1.1 and 2.2.

COROLLARY 2.3. $\pi(L_p) \leq 2^{|2/p-1|}$.

We trivially have $\pi(L_p) = 2^{\lfloor 2/p - 1 \rfloor}$ for $p = 1, 2, \infty$. We will show that $\pi(l_p^2) < 2^{\lfloor 2/p - 1 \rfloor}$ for others values of p. Let 1 , and <math>q = p/(p-1). By Theorem 3.4 below we can suppose p < 2 < q. Let H be the hyperplane in \mathbb{R}^2 given by $\{(x, y): \alpha x + \beta y = 0\}$, where $\|(\alpha, \beta)\|_q = 1$. If $\alpha = 0$ or $\beta = 0$ then $\|P_H\| = 1$. We suppose $\alpha, \beta \neq 0$. From [2, Lemma 2.1] we have

$$\|P_H\| = (|\alpha|^{(q-1)q} + |\beta|^{(q-1)q})^{1/q} \|(\alpha, \beta)\|_p < \|(\alpha, \beta)\|_p \le 2^{|2/p-1|}$$

Therefore

 $\pi(l_p^2) = \max\{ \|P_H\| : H \text{ hyperplane of } \mathbb{R}^2 \} < 2^{|2/p-1|}.$

3.
$$\pi(X) = \pi(X^*)$$

Let X and Y two Banach spaces. We say that the set-valued mapping $P: X \to 2^Y$ admits a *linear selection* if there exists a linear mapping $T: X \to Y$ such that $T(x) \in P(x)$, for every $x \in X$. We observe that, if the metric projection $P_M: X \to M$ admits a linear selection T, then T is a bounded operator. In fact, $||T|| \leq \pi(X)$. As is usual, by T^* we denote the adjoint operator of T. We recall that if M is a subspace of X, we denote by M^{\perp} the subspace of X^* defined by $M^{\perp} := \{x^* \in X^*: x^*(x) = 0 \text{ for all } x \in M\}$.

LEMMA 3.1. Let M be a subspace of a Banach space X. We suppose that the metric projection P_M admits a linear selection T. Then T^* is a linear selection of $P_{N^{\perp}}$, where $N := \ker T$.

Proof. As T is an operator with $T^2 = T$ (i.e., is a projection) we have $X = M \oplus N$ and N is a closed subspace of X. Moreover, it is easy to see that $T^*(X^*) = N^{\perp}$. Now we will show that, for any $x^* \in X^*$, $T^*(x^*) \in P_{N^{\perp}}(x^*)$. For every $x^* \in X^*$ we have

$$||x^* - T^*(x^*)|| = \sup\{|(x^* - T^*(x^*))(x + y)|: ||x + y|| \le 1, x \in M \text{ and } y \in N\}$$

= sup{ |x^*(y)|: ||x + y|| \le 1, x \in M and y \in N}. (4)

If $y \in N$ then $0 = T(y) \in P_M(y)$. Hence $||y|| \leq ||x + y||$, for all $x \in M$. Then

$$\sup\{|x^*(y)|: ||x+y|| \le 1, x \in M \text{ and } y \in N\}$$

= $\sup\{|x^*(y)|: ||y|| \le 1 \text{ and } y \in N\}.$ (5)

Let $z^* \in N^{\perp}$. Using (4) and (5) we obtain

$$||x^* - z^*|| \ge \sup\{|(x^* - z^*)(y)|: ||y|| \le 1 \text{ and } y \in N\}$$
$$= \sup\{|x^*(y)|: ||y|| \le 1 \text{ and } y \in N\}$$
$$= ||x^* - T^*(x^*)||.$$

Consequently $T^*(x^*) \in P_{N^{\perp}}(x^*)$.

In [3, p. 142] we see, implicitly, the following lemma.

LEMMA 3.2. Let M be a proximinal hyperplane of the Banach space X, $x \in X$, and $y \in P_M(x)$. Then P_M admits a linear selection T with T(x) = y.

Now we will present the main result of this section.

THEOREM 3.3. For every Banach space X we have that $\pi(X) = \pi(X^*)$.

Proof. We can suppose that X is a reflexive Banach space. For if X is non-reflexive then X is not a uniformly non-square Banach space, [1, p. 256]. Therefore $\pi(X) = 2$. We observe that X^* is a non-reflexive space. Then, in similar way, $\pi(X^*) = 2$. Thus $\pi(X) = \pi(X^*)$. We recall that if X is reflexive then every closed subspace of X is proximinal, see [3, p. 99].

For every $\varepsilon > 0$ we can find a subspace M of $X, x \in B_X$, and $y \in P_M(x)$ such that $\pi(X) - \varepsilon < ||y||$. From the characterization theorem of elements of best approximation, [3, p. 18], we get $x^* \in M^{\perp}$ with $||x^*|| = 1$ and $x^*(x - y) = ||x - y||$. We put $H = \text{Ker } x^*$. Then $y \in P_H(x)$. As H is a proximinal subspace of X, as a consequence of Lemma 3.2 we get a linear selection T of P_H such that T(x) = y. From Lemma 3.1 we obtain

$$\pi(X) - \varepsilon \leqslant \|y\| = \|T(x)\| \leqslant \|T\| = \|T^*\| \leqslant \|P_{N^{\perp}}\| \leqslant \pi(X^*)$$

where N := Ker T. Since ε is arbitrary we have

$$\pi(X) \leqslant \pi(X^*). \tag{6}$$

From inequality (6) we infer that $\pi(X^*) \leq \pi(X^{**})$. Moreover, as X is a reflexive Banach space, we have that $\pi(X^{**}) = \pi(X)$. Consequently $\pi(X) = \pi(X^*)$.

REFERENCES

- 1. B. Beauzamy, "Introduction to Banach Spaces and Their Geometry," North Holland, Amsterdam, 1985.
- 2. F. Mazzone and H. Cuenya, A note on metric projection, J. Approx. Theory 81 (1995), 425-428.
- I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, New York, 1970.
- 4. P. Wojtasczyk, "Banach Spaces for Analysis," Cambridge Univ. Press, Cambridge, UK, 1991.